
ABSTRACT

The aim of the present study was to test the four commonly
used models to predict the dates of flowering of temperate-
zone trees, the spring warming, sequential, parallel and
alternating models. Previous studies concerning the perfor-
mance of these models have shown that they were unable to
make accurate predictions based on external data. One of
the reasons for such inaccuracy may be wrong estimations
of the parameters of each model due to the non-conver-
gence of the optimization algorithm towards their maxi-
mum likelihood. We proposed to fit these four models using
a simulated annealing method which is known to avoid
local extrema of any kind of function, and thus is particu-
larly well adapted to fit budburst models, as their likeli-
hood function presents many local maxima. We tested this
method using a phenological dataset deduced from aero-
palynological data. Annual pollen spectra were used to esti-
mate the dates of flowering of the populations around the
sampling station. The results show that simulated anneal-
ing provides a better fit than traditional methods. Despite
this improvement, classical models still failed to predict
external data. We expect the simulated annealing method
to allow reliable comparisons among models, leading to a
selection of biologically relevant ones.

Key-words: convergence; flowering time; optimization algo-
rithm; phenology; simulated annealing method; tree budburst.

INTRODUCTION

During the last 20 years, the causes and consequences of
variation in phenology have received much interest from
ecologists concerned with problems related to global warm-
ing (Lechowicz & Koike 1995). Initial interest in phenology
appeared in the first International Biological Program
(1969–1974), as phenology was recognized to play a promi-
nent role in the modelling of ecosystem productivity (Lieth
1971). Some models predicting the date of budburst of
temperate-zone trees have already been developed (Cannell
& Smith 1983; Hunter & Lechowicz 1992a; Kramer 1994a)
and are now widely used to predict the consequences of

particular global warming scenarios on tree phenology
(Cannell & Smith 1986; Murray, Cannell & Smith 1989;
Hänninen 1991, 1995, 1996; Hänninen et al. 1993, 1996;
Kramer 1994b, 1995) and also on terrestrial carbon produc-
tivity (Lieth 1971; Kramer & Mohren 1996).

Temperature is recognized to be the main determinant of
the timing of budburst. Some models consider only the
action of forcing temperatures [‘Thermal Time model’
(Cannell & Smith 1983) or ‘spring warming model’
(Hunter & Lechowicz 1992a)], whereas others also con-
sider the action of chilling temperatures [‘parallel model’
(Landsberg 1974; Hänninen 1987, 1990; Kramer 1994a);
‘sequential model’ (Sarvas 1974; Hänninen 1987, 1990b;
Kramer 1994a) ‘alternating model’ (Cannell & Smith
1983; Murray et al. 1989; Kramer 1994a, 1994b)].

Previous studies of models predicting tree phenology
have usually concerned a single species [Fagus sylvatica
L. (Kramer 1994a), Pinus palustris Mill. (Boyer 1973),
Picea sitchensis (Bong.) Car. (Cannell & Smith 1983)],
and rarely several species (Hunter & Lechowicz 1992). In
addition, because of a lack of data, the accuracy of predic-
tions on external data (i.e. not used to fit the parameters),
has been seldom estimated (Kramer 1994a).

However, estimates of these models have no external and
even no internal validity (Kramer 1994a). We define here
external validity as the accuracy of prediction of external
data. In contrast, internal validity is the accuracy of predic-
tions of data used to fit the models. The use of external
validity to estimate the accuracy of a model is called cross-
validation (Lebreton, Burhnam & Clobert 1992), and is espe-
cially useful when the functional relationships of model
parameters have been specified. A second critical point con-
cerning phenology modelling is the non-convergence of the
optimization algorithms of the likelihood function (Kramer
1994a). This implies that best-fit parameters cannot be prop-
erly estimated and, therefore, cannot be used for accurate pre-
diction and hypothesis testing. To make the best of any given
model, new algorithms are therefore needed. The use of con-
vergent algorithms will allow the identification of models
with the best internal validity, the performances of which
then have to be further tested on external data, especially if
they are used in futurist climatic scenarios.

In this study, our purpose was to fit the spring warming,
sequential, parallel and alternating models using a new
method of optimization. The aim was to find reliable
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estimates of the models in improving the convergence of
the optimization algorithm of their likelihood function.
The dataset used to fit the models is based on the dates of
flowering of seven European tree species over 19 years.
Although most of the models available in the literature
were developed in order to predict leaf budburst, flower
budburst may respond to the same kind of model (Boyer
1973; Cannell 1989).

MATERIALS AND METHODS

Data

Pollen data

The dates of flowering were deduced from peaks of pollen
shedding in the atmosphere. These data consist of pollen con-
centrations in the atmosphere as weekly averages from
Montpellier, France (43·3°N, 3·6°E) over 19 years
(1974–1992). Pollen was trapped on filters fixed vertically on
a wind cock which continuously oriented the filters to the
wind. Filters were exposed all year long and were changed
every week. The density of the pollen intercepted on the
filters was estimated for each identified taxon according to
Cour (1974). Given the amount of wind passed through the
filters and measured by an anemometer, the concentration of
pollen per m3 air, for each taxon, was calculated. This method
allowed us to determine the temporal variation in pollen con-
centrations of each taxon present in the atmosphere and, thus,
to determine the week during which the pollen was released.

Pollen identification was made to the genus level as
pollen morphologies of different species within a genus are
usually indistinguishable. However, only genera repre-
sented by one species in the area of Montpellier were con-
sidered. Seven such genera were found from regional flora
and vegetation maps (1/200000). The species studied were:
Aesculus hippocastanum L., Alnus glutinosa Gaertn.,
Buxus sempervirens L., Olea europaea L., Platanus aceri-
folia Willd., Taxus baccata L. and Ulmus minor Mill.

Dates of flowering

The middle day of the week of pollination was assumed to
be the mean date of anthesis of the populations around the
pollen sampling station (≈ 50 km). The models were used
to predict the dates of anthesis which corresponded to the
dates of flowering of the male flowers (A. glutinosa, P.
acerifolia, T. baccata) or to the dates of the male matura-
tion stage (A. hippocastanum, B. sempervirens, O.
europaea, U. minor).

Meteorological data

Pollen traps were placed in the meteorological station near
the airport of Frejorgues (6 km south of Montpellier).
Daily minimum and maximum temperatures, wind speed,
and weekly precipitation were recorded. The average tem-
perature of each day was estimated to be the mean of the
daily minimum and maximum temperatures. The speed of
the wind was used to calculate the weekly pollen concen-
tration in the atmosphere and the weekly precipitation was
used to control if the pollination was disturbed by
unfavourable meteorological conditions which would bias
the dates of flowering.

Models

The spring warming model for the timing of budburst was
introduced by Reaumur (1735), used by Robertson (1968)
and later by Cannell & Smith (1983). This model assumes
that there is a linear relationship between energy (sum of tem-
perature degrees above a given threshold) and the growth
state of buds. Budburst thus appears after a certain amount of
accumulated heat units. This model is the simplest model of
budburst prediction, as it involves only three parameters: the
base temperature (Tb) (thermal threshold above which the
degrees are counted), the sum of degree–days (F*) and the
starting date of the heat sum (t0) (Eqn 1, Table 1).
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y date of flowering 
xt daily mean temperature (°C)
Rf(xt) forcing rate function
Rc(xt) chilling rate function
Sf state of forcing
Sc state of chilling
Km minimum potential of unchilled buds to respond to forcing temperature
C* critical value of state of chilling for the transition from rest to quiescence
F* critical value of state of forcing for the transition from quiescence to flowering 
t0 starting day of the heat sum calculation 
t1 date of onset of rest 
t2 date of onset of quiescence
Tb base temperature
To optimal temperature of the rate of chilling 
a, b constants

Spring warming model
y

y such as Sf =∑ Rf (xt) = F*
t0

Table 1. Description of the models [from
Sarvas (1974); Cannell & Smith (1983);
Murray et al. (1989); Hänninnen (1990);
Kramer (1994a)]
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0 xt ≤ Tb
Rf (xt) = { (1)

xt – Tb xt > Tb

Alternating model
y

y such as Sf = ∑ Rf (xt) = F* = a exp(bSc) (2)
t2

t2

t2 such as ∑ Rc (xt) = C*
t1

y

Sc = ∑ Rc (xt)
t1

0 xt > Tb
Rc (xt) = (3){ 1 xt ≤ Tb

0 xt ≤ Tb
Rf (xt) = { xt – Tb xt > Tb

Sequential model
y

y such as Sf = ∑ Rf (xt) = F*
t2

0
28·4 xt ≤ TbRf (xt) = ––––––––––––––– (4){

1 + e – 0·185 (xt – 18·4) xt > Tb

t
2

t2 such as ∑ Rc (xt) = C*
t1

0/////////// xt ≤ –3·4 or xt ≥ 10·4

xt + 3·4
––––––

Rc (xt) = To + 3·4 –3·4 < xt ≤ To (5)

xt –10.4
–––––––{
To – 10·4 To < xt < 10·4

Parallel model

y

y such as Sf =∑ Rf (xt) = F*
t1

0

1 – Km
xt ≤ 0 and Sc < C*

Rf (xt) = (Km + ––––– Sc) f (xt) xt > 0 and Sc < C* (6)
C* xt > 0 and Sc ≥ C*{

f (xt)

28·4
f (xt) = ––––––––––––––

1 + e –0·185 (xt – 18·4)

y

Sc = ∑ Rc (xt)
t1

0/////////// xt ≤ 3·4 or xt ≥ 10·4
xt + 3·4
–––––– –3·4 < xt ≤ To

Rc (xt) = To + 3·4
xt – 10·4
––––––– To < xt < 10·4{
To – 10·4

Table 1. Continued



The three other models (parallel, sequential and alternat-
ing) consider, in addition, the effect of cool temperatures or
chilling degrees which are involved in the break of the bud
dormancy. It is now commonly assumed that a period with
chilling temperatures (– 3·4 to 10·4 °C) [Sarvas (1974) in
Hänninen (1990a)] followed by a period with forcing
temperatures (> 0 °C) induces budburst (Kramer 1994a).

The sequential model (Sarvas 1974; Hänninen 1987,
1990b; Kramer 1994a) assumes that the effect of forcing
temperatures cannot be effective unless chilling require-
ments have already been fulfilled. On the contrary, the paral-
lel model (Landsberg 1974; Hänninen 1987, 1990b; Kramer
1994a) assumes that forcing temperatures can be active con-
comitant with the time spent for chilling conditions and they
are not fully active as long as full chilling is not reached.
Both models assume that the state of chilling and forcing is
the summation of the rates of chilling and forcing. The rate
of chilling was assumed to show an optimum between the
minimum and the maximum thermal thresholds (Sarvas
1974; Hänninen 1990b; 1991; Kramer 1994a) (Table 1,
Eqn 5). The rate of forcing was assumed to be logistically
related to temperature (Table 1, Eqns 4 and 6). Because we
intended to estimate the external validity of the models, half
the data were needed to fit the models (9 years), and at least
half the data were needed to test them (10 years). Thus,
parameters of the forcing and the chilling rate have been
fixed and not released in this study, as in Hänninen (1990b,
1991), because the number of parameters would have been
too high compared with the number of data available to fit
the models. For the same reason, the base temperature of the
parallel model was fixed to 0 °C in this study.

Finally, the alternating model (Murray et al. 1989;
Cannell & Smith 1983; Kramer 1994a) assumes that the
state of chilling is defined as the number of days when the
temperature is under a certain thermal threshold (Table 1,
Eqn 3). The state of forcing is defined as a heat sum of
degree–days above this thermal threshold (Table 1, Eqn 1).
This model assumes in addition the existence of a negative
relationship (Table 1, Eqn 2) between the heat sum
required to flower and the number of chilling days received
during the autumn and/or the winter. The starting date of
the accumulation of degree–days was not fixed as in
Kramer (1994a) but defined by the day when the sum of
chilling days attained a minimum (C*).

Parameter estimation

Models were fitted using the least squares method. The
function f (x) =

∑ [ ri (x)] 2

i

is minimized in the parameter space x, where ri(x) is the
residual, ri(x) = di(x) – diobs, di(x) is the predicted date and
diobs the observed date of the year i. This is the so-called
non-linear least squares problem. A Shapiro–Wilk’s W-test
for normality (Shapiro, Wilk & Chen 1968) was performed

on the residuals for each model and each species. Test results
were combined using Fisher’s method (Manly 1985).

We chose a simulated annealing method to fit the models.
Simulated annealing refers to an analogy with a thermo-
dynamic principle on the way metals cool and anneal or
liquids freeze and crystallize. This principle is the Boltzmann
probability distribution, Prob(E) ≈ exp(– E/kT), a system in
thermal equilibrium at temperature T has its energy proba-
bilistically distributed among all different energy states E. In
1953, Metropolis et al. first used this principle for numerical
calculations. The algorithm of optimization issued from this
principle, named the Metropolis algorithm was used to fit the
models. The principle is as follows. Considering that a set of
parameter values x is analogous to a thermodynamic state S
of a system, and the sum of squares f(x) is analogous to the
energy E of that system, the range of possible states (S) is
explored by randomly changing from S1 to S2 according to
the following rule. The probability of transition S1 to S2 is 1 if
S2 < S1, and exp(– (S2 –S1)/kT) if S2 > S1, where T is the
temperature of the system. Aslow enough decrease of T leads
to a quasi certain convergence of the system towards its state
of minimum energy (Press et al. 1989). The algorithm needs
a generator of random changes. We chose the Marsaglia,
Zaman & Tsang (1990) procedure. The first set of parameters
is arbitrary, then all the parameters are changed by a random
amount. If the change decreases the residual sum of squares,
it is accepted; if it increases the residual sum of squares
(from S1 to S2), then it is accepted with probability
P = exp(– (S2 – S1)/kT). This generates a random walk which
tends to decrease the residual sum of squares. The whole
parameter space is explored roughly a first time, then in detail
around the highest relative minimum or the absolute mini-
mum found. The parameters of the Metropolis algorithm
must be carefully adjusted to ensure the convergence of the
algorithm towards the absolute least square minimum. In par-
ticular, T normally decreases from the start to the end of the
search of the minimum. The more T decreases, the higher the
probability of rejecting a change that increased S. In our case,
because there exist an especially large number of local
minima, T has to decrease very slowly so that the algorithm
does not fall into one of the local minima. Another important
condition to improve the search of the absolute minimum
was to allow ri(x) to take a real value (not only integer ones).
This condition completely smooths the distribution of f,
which makes the convergence toward the absolute minimum
much easier.

The accuracy of the estimates found by the Metropolis
algorithm was checked by replication. The quality of the
convergence was measured by the standard error on each
parameter for the repetitions.

Tests

Internal and external validity

First, parameters were fitted using 9 years of the
Montpellier dataset (odd years from 1975 to 1991). The
internal validity of each model was measured by the
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percentage variance explained (R2), and tested for each
species separately using F-tests. The internal validity
measures the goodness of fit for the years used to fit the
parameters only. The external validity (Chatfield 1988)
was measured by the percentage of variance explained of
external observed dates (10 even years from 1974 to 1992).
External validity was tested as follows. The percentage
variance explained was assimilated to a coefficient of
determination, the associated correlation coefficient of
which was compared with critical values for correlation
coefficients (Rohlf & Sokal 1969). 

RESULTS

Use of the residual sum of squares

Normality of residuals is verified for each model (Fisher’s
combined tests over independent Shapiro–Wilk’s test
results: χ2

14 = 2·3; 7·7; 11·1; 8·7 for the spring warming,
alternating, sequential, parallel models, respectively, all
non-significant). Residuals and observed dates of flower-
ing were not correlated except for the parallel model
(Fisher’s combined tests over independent Shapiro–Wilk’s
test results: χ2

14 = 16·7; 14·5; 9·6; 23·9 for the spring
warming, alternating, sequential, parallel models, respec-
tively, χ2

14(5%) = 23·7). Correlation between residuals and
the dates of flowering for the parallel model are the result
of low internal validity. However, we can say that the
measurement errors of the dates of flowering were inde-
pendent and normally distributed. The use of the minimum
sum of squares of the residuals as a criterion to identify the
optimal set of parameter values is therefore justified.

Convergence of the Metropolis algorithm

Coefficients of variation of the residual sum of squares of
the different repetitions of the fit were low in most cases
(between 0 and 10% in 82% of cases) (Table 2).
Coefficients of variation greater than 10% are due to
frequent convergences towards a second local minimum.
The coefficients of variation of the estimates were inferior
to 15% in 67% of cases. Coefficients greater than 15% are
due to one or two convergences towards a local minimum
far away from the absolute, or to a parameter of very low
variance and mean, such as To, Tb, b or C*. This indicates
that the algorithm almost always converged, or at least
more than half the time, towards the same region defining a
minimum. We can expect that the lowest minima found
with the highest frequency is the absolute minima.

To verify this hypothesis, f should be plotted for all
possible parameter values, for all models and all species.
This was carried out for the spring warming model for O.
europaea (Fig. 1). The support curve shows that the abso-
lute minimum at f = – 29 was defined by the (1320, 110, 3)
parameter set of the model. The Metropolis algorithm
found a minimum at f = – 27 for the parameter set (1297,
109, 3·2). A zoom on the F* parameter (step size: 1 °C)
with the values 109 for t0 and 3·2 for Tb, shows that the
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absolute minimum is defined for F* = 1299 with a mini-
mum of – 26·5. Thus, considering the step size that was
used to plot the f function (10; 2; 1), it appears that the
Metropolis algorithm found the global minimum of this
function.

Internal validity of the models

Each model had internal validity whatever the species
(Table 3). The explained variance is from 14% for the
worst performance to 91% for the highest performance,
with a mean of 70% over all species and models.

External validity of the models

Based on the number of species for which the model shows
significant external validity, the sequential and the parallel
models are the worst predictor, followed by the alternating
model and the spring warming model (Table 3). The
explained variance (when external validity exists) varied
from 33% for the worst performance to 69% for the best
performance.

Estimates

Table 4 shows the estimates of each model for each species
in order to permit comparison with further studies.
Estimates have not been published in the previous studies

for these species so that no comparison was possible.
Budburst models pertained to mechanist model type. One
of the aims and advantages of such models is the possibil-
ity of giving a biological meaning to the estimates. Our
knowledge of tree phenology does not permit such an
interpretation, all the more so because estimates have, for
example, never been tested on experimental data.
However, it can be remarked that first, the Km parameter of
the parallel model is always estimated to be 0, a result that
indicates that buds have no potential to respond to forcing
temperature when they are unchilled, which is the main
hypothesis of this model.

DISCUSSION

Data

The aeropalynological dataset, which covers relatively long
periods, has a large advantage compared with direct pheno-
logical observations in natural populations. Pollen trapped
in the filters came from a wide region so that the pollen
peaks corresponded to the timing of flowering of a whole
population. Although such data do not take into account
intrapopulation variability due to genetic differences or
local variation in thermal conditions (solar exposure), they
represent phenological trends of populational/regional sig-
nificance. Thus, the dataset avoids one of the most impor-
tant problems associated with the historical phenological
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Figure 1. Least square function of the spring warming model for Olea europaea. For each parameter value, only the maximum of f is
represented among all possible values. Step size of the parameters: F*: 10; t0: 2; Tb:1. A zoom of the range 1290–1320 of the F* parameter is
shown for t0 = 110 and Tb = 3·18. t0 = number of days from 1 September.



observations made in natura, for which there is often no
certainty that the same trees were observed each year, nor
do we know how representative of the population these
trees were (Hunter & Lechowicz 1992; Kramer 1994b;
Sparks & Carey 1995).

It is important to point out here the exact geographical
coincidence between the vegetation samples and the mete-
orological station. This is of major importance for two rea-
sons. Firstly, local adaptation of phenology to climate is
still possible although it has not yet been proved. Secondly,
the geographical separation of meteorological and pheno-
logical data make predictions and fits imprecise.
Coincidence has not always been verified, as phenological
observations in phenological gardens or in natural popula-
tions usually come from isolated places where no meteoro-
logical stations exist (Kramer 1994a,b).

The pollen dataset also suffers disadvantages. First,
pollen can only be identified to the genus level and a large
number of taxa cannot be used in the search study. Second,
the pollen data indicate the time of anthesis and not the
time of burst of the flower buds. Meteorological condi-
tions for anthesis are relatively high temperatures or
increasing temperatures and dry conditions. If these con-
ditions are not met, anthesis can be delayed or reduced
although flowers were potentially ready for anthesis. The
pollen signal can be in such cases biased from 1 to 7 d.
Nevertheless, the data used to fit the models have been
controlled in order to avoid biases due to meteorological
conditions as previously explained. Third, pollen data are
weekly. This precision would be low for a study on an
individual tree, but is sufficient for a population study
because the magnitude of flowering from an individual to
another is more than 1 month. In this condition, it is use-
less to try to obtain sums of squares lower than 9
(years) × 3 (minimum measurement error)2 = 81, i.e. for
one-third of the cases in our study.

The Metropolis algorithm

As f(x) is a non-linear function of many parameters, find-
ing its minimum is not trivial; numerical methods to
evaluate the maximum likelihood estimate by iteration

are necessary. Furthermore, the support curve of –f
shows a large number of local minima (Fig. 1), so that
the traditional Downhill Simplex and Newton methods
will converge to the global maximum with a very low
probability. Virtually nothing is known about finding
global extrema in general. Traditionally, two kind of
methods can be distinguished: (i) find all local extrema,
starting from widely varying starting values of the
parameters and keep the extreme one, (ii) perturb a local
extremum by taking a finite amplitude step away from
it, and see if the algorithm returns a better parameter set
or always the same parameter set (Press et al. 1989).
Among the other possible methods, Barnett (1966) has
shown that the only method to ensure convergence when
the likelihood equation has multiple roots was the
method of false position. This method, however, does
not guarantee that the absolute extremum is found. All
the relative extrema should be found to determine the
absolute extremum.

The problem of convergence of the algorithm of opti-
mization used for budburst model fits has already been
underlined by Kramer (1994a) using the G E N S TAT direc-
tive Fitnonlinear and the subroutines EO4FCF of the
Fortran library (Newton method); and Amoeba of the
Pascal library transposed in Fortran (Downhill Simplex
method) (Kramer, personal communication).

The method of simulated annealing is a technique that
has received a lot of attention for its suitability for all
kinds of optimization problems, as any function can be
optimized. It was seen 20 years ago as a very attractive
method of optimization, especially for anomalous cases
(Press et al. 1989). It solved the famous travelling sales-
man problem and was also used successfully for design-
ing complex integrated circuits. One of its most attractive
features is its accuracy for not falling into unfavourable
local maxima. The Metropolis algorithm had already
been used successfully for genetic problems (Szymura &
Barton 1986). The results obtained in the present study,
that is the convergence towards the absolute minimum
despite many local minima, show that the algorithm also
seems to be well adapted to budburst models. Even if
models have no external validity, we are now sure that it
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Table 3. Internal and external validities: percentage variance explained (R2) on internal and external data

Internal validity External validity

Spring Spring 
warming Sequential Parallel Alternating warming Sequential Parallel Alternating

A. hippocastanum 0·84ns 0·82ns 0·48ns 0·88* – – – –
A. glutinosa 0·41ns 0·90* 0·27ns 0·79ns – – – –
B. sempervirens 0·58ns 0·72ns 0·45ns 0·66ns 0·58** – – 0·69***
O. europaea 0·90* 0·91* 0·74ns 0·78ns 0·64*** 0·33* 0·64*** 0·67***
P. acerifolia 0·90* 0·79ns 0·81ns 0·73ns 0·65*** – – –
T. baccata 0·80ns 0·74ns 0·14ns 0·59ns – – – –
U. minor 0·75ns 0·83ns 0·57ns 0·76ns – – – –

Significance level: ns, P > 0·05; *, P < 0·05; **, P < 0·01; ***, P < 0·001. –, residual sum of squares superior to the total sum of squares.



cannot be the consequence of wrong estimations, as the
convergence ensures correct estimates.

External validity

The first important result is the existence of external valid-
ity for some species, a result that has not been previously
reported for such models. The algorithm of optimization
seems to play an important role in this result. However, the
lack of external validity shown by the previous study of
Kramer (1994a) could also have other explanations in
addition to the fact that the algorithm of optimization did
not converge. In his estimation of external validity, Kramer
fitted the parameters of the models with the data of a Dutch
dataset and tested them with a German dataset. The models
fitted had no external validity except the sequential-i
model. This model was similar to the sequential model
except that Tb was fixed to 0 °C and that all the other
parameters were not constrained into a range so that some
of the estimates could take unrealistic values. Three possi-
ble reasons can be suggested for the lack of external valid-
ity. First, there may be a local adaptation of tree phenology.
If the German populations of Fagus sylvatica are adapted
to the climate of Germany, the estimates of the models
should be different from the estimates of the Dutch popula-
tions. If this were the case, such a result could explain why
the predictions of the dates of budburst in Germany using
the Dutch estimates did not match the observations.
Second, the phenological data came from observations of
individual trees. Intrapopulation variation of dates of bud-
burst is usually high (Parlange 1974; Billington & Pelham
1991), especially for early flowering species. Thus, even if
there is no local adaptation of tree phenology, it can been
expected that the estimates of some Dutch individual trees
would be different from the estimates of German individ-
ual trees. Third, the meteorological data did not correspond
to the phenological data, as the corresponding meteorology
of the sampling localities was not available. One meteoro-
logical station was available in the Netherlands to fit the
models and another station was available in Germany to
test the estimates.

Whatever the reason for the lack of external validity, the
present study has shown that such models may have exter-
nal validity for some species but not others. Any one or a
combination of the four reasons presented above could
help to explain this result. However, external validity is
still non-existent for the majority of the species. Species
having their dates of flowering accurately predicted by the
models are the late flowering species, and in particular,
Olea europaea (the latest flowering species), of which the
dates of flowering were accurately predicted by each
model. This result may be explained by the rapid and
important rise in temperature in the late spring in
Montpellier when those species flower. This rise is not fol-
lowed by a subsequent decrease as is often observed in
winter and early spring. Such successions of cool and
warm events may have two consequences. First, interrup-
tions of a warm period by cool events in late winter and
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early spring could provoke an increase in the time from
quiescence to budburst. Second, interruptions of the chill-
ing period by warmer events could provoke a less efficient
impact of the cool temperatures (Farmer 1968). The conse-
quence of this phenomenon would be a wrong estimation
of the state of chilling and, thus, a wrong estimation of the
starting date of the forcing phase (and a wrong estimation
of the critical state of forcing in the case of the alternating
model). Thus, models could fail to make accurate predic-
tions for early flowering species. In contrast, late flowering
species accumulate a lot of degree–days per day the last
days before their flowering, so that the delay induced by
the warming period in the winter and the cool events in
early spring can be compensated.

Finally, despite the fact that the internal validity of the
models is usually very high (up to 90%), this does not
provide high external validity at all (Table 3). This
strengthens the importance of cross-validation of these
kinds of models. 

Model comparison

The comparison of the accuracy of the different models for
the different species shows that there is no consensus
model even if some models seem consistently more accu-
rate than others. The results of Hunter & Lechowicz (1992)
testing different models for many species also showed a
similar feature. This result indicates that all the different
possible models have to be tested for each species.

The choice of the best model requires that a certain num-
ber of conditions be checked. The aim of model selection is
to identify a biologically meaningful model that explains
the significant variability in the data, but excludes unnec-
essary parameters (Lebreton et al. 1992). Model selection
uses mainly two kind of statistics: the likelihood ratio test
and the Akaike Information Criterion (AIC) (I = – 2lnL
– 2df). AIC implies at least to be able to calculate the likeli-
hood of each model which is impossible as the distribution
of the residuals is not exactly known, even if we know it is
not significantly different from a normal distribution. As
we are allowed to use residual sum of squares as estimator
of the likelihood, we could have used F-tests on the
models’ residual sum of squares instead of a likelihood
ratio test if the models were interlocked. It is not always
possible to decide upon one model that is best for a given
set of data. Several similar but different models may be
nearly equally applicable to the data, which is the case
here. The last solution in such a case is that the models
should be made on grounds external to the data used to
compute the parameters of the models (Chatfield 1988).

Considering the number of species for which the models
show external validity and the values of the coefficient of
determination, the spring warming model appears to be the
most accurate model followed by the alternating model,
and lastly by the parallel and sequential models. The poor
performance of the parallel model (in terms of internal or
external validity) could be explained by the fact that its
principal hypothesis, i.e. buds are potentially able to

respond to forcing temperature even if they are unchilled,
is not supported by the data, as Km (the potential of
unchilled buds) is always fitted to be 0. The external valid-
ity obtained by the spring warming model for late flower-
ing species is probably due to the relatively poor influence
of chilling temperatures for these species. The case of O.
europaea shows that chilling temperatures do not bring a
lot of explained variance compared with the additional
degree of freedom used. This is also shown by the high
sensibility of the To parameter (optimal temperature for the
chilling temperature action) (Table 2), which denotes a
lack of information to fit it properly. However, the action
of chilling temperatures on budburst has been proved in
many experiments (Farmer 1968; Murray et al. 1989;
Hänninen et al. 1993; Heide 1993; Myking & Heide 1995;
Nelson & Lavender 1979) and the failure of the spring
warming model to predict dates of flowering of early
species indicates that forcing is insufficient for accurate
predictions for this kind of species. The negative relation-
ship was first shown by Cannell, Murray & Smith (1983)
in a greenhouse experiment where the state of chilling was
extremely variable compared with possible variation
occurring in natural conditions. In the present study, mod-
els were fitted with data collected in natural conditions. In
such conditions, chilling temperatures experienced by trees
each year do not vary a lot, especially at the latitude of
Montpellier. As a consequence, the negative relationship
between the state of chilling and the state of forcing seems
to be non-existent in the Montpellier area (Fig. 2a–d), and
may also occur at higher latitude. If the geographical scale
is expanded, the relationship becomes more obvious
(Fig. 2e & f) and if it is expanded up to Europe the relation-
ship becomes particularly clear (Fig. 2g & h).

The choice of the best model is difficult as models have
been fitted for several independent data series which are
the several species. Hence, the choice of the most accurate
model depends on the species. According to the standard
error on external data, the best models are the alternating
model for B. sempervirens and the spring warming model
for O. europaea and P. acerifolia. According to the princi-
ple of parsimony, we can say that the spring warming
model is the best predictor as it has similar external validity
to the others but requires less degrees of freedom.
However, many studies concerning budburst models,
including this one, have shown that there is no consensus
model for every species. The spring warming model for
example, has shown its limits for the early flowering
species.

In conclusion, it appears that the choice of the algorithm
of optimization used to fit budburst models is a particularly
important parameter in budburst modelling. Our study
indicates that the method of simulated annealing may bring
a non-negligible contribution to the problem of non-con-
vergence encountered in the former studies. Despite the
improvement due to this kind of optimization method, the
models tested seem to be accurate only for late flowering
species. Thus, the forcing process seems apparently well
formalized and sufficient to predict the flowering of these
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Figure 2. Relationship between the state of forcing (Sf in ordinate) and the state of chilling (Sc in abscissa) for Aesculus hippocastanum,
Taxus baccata, Platanus acerifolia and Alnus glutinosa: (a, b, c, d) in Montpellier and (e, f, g, h) in different localities over Europe from
Abisko to Oran (dates of flowering measured with aeropalynological data, Cour, unpublished results). Each point is a given year in a given
location. R2: explained variance by the adjusted exponential function. Sf and Sc have been calculated as follows:

y t2

Sf = ∑ Rf (xt) and Sc = ∑ Rc (xt),
t1 t2

with t2 = 1 January, t1 = 1 September and Rc and Rf defined as in the sequential model.



kinds of species for which the influence of the chilling
period is reduced. As proved experimentally, the chilling
process is therefore necessary for early species, as the spring
warming model failed to predict their dates of flowering.
However, its formalization seems until now to be too differ-
ent from biological reality to improve the model’s accuracy.
In particular, two problems can be responsible, first the
unknown impact of warm periods on chilling temperature
action; second, the difficulty of fitting the negative relation-
ship between the state of forcing and the state of chilling in a
single place for the alternating model. Nevertheless, conver-
gence will now allow reliable tests and comparisons of dif-
ferent models that will enable the selection of accurate
hypotheses involved in budburst timing prediction.
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